
Hopelessly Ambitious
Reversing Talk

Applying Reverse Engineering to Web Security

about:matasano
★ An Indie Security Firm: Founded Q1’05,

Chicago and NYC.

★ Research 2006:

‣ endpoint agent vulnerabilities

‣ hardware virtualized rootkits

‣ a protocol debugger

‣ windows vista (on contract to msft)

‣ storage area networks (broke netapp)

‣ 40+ pending advisories

about:thomasptacek

★ You may remember me from such research
papers as: “Insertion, Evasion, Denial of
Service”

★ or such companies as: Secure Networks,
Network Associates, Arbor Networks

★ or such ISPs as: EnterAct

★ or such high schools as: St. Ignatius

★ etc, etc.

about:owasp_talk

★ Reversing and Code-Assisted Pen Test

‣ add hours-not-days to projects, find 10x as
many flaws

★ Binary Reversing

‣ all source is now open; C++, Java, .NET

★ Protocol Reversing

‣ busting secret protocols that hide in HTTP

lopatic
overflow

smashing
the stack

heap
overflows

integer
overflows

uninitialized
variables

helpfile
typos

morris
worm

mystery
zone

‘88 ‘95

a question:

why did overflows take 7 years to break out?

why reversing matters (1)

★ Reversing Will “Break Out” For Attackers

★ 1994 Attacker: Shell Scripts, .rhosts

★ 2006 Attacker: Assembly, Kernel Heap

matasano

random
fuzzing

targeted
fuzzing

surgical
fuzzing

audit

knowledge

sample file source

coverage

shallow deep

instant

speed
painstaking

sweet
spot

fished
out

why reversing matters (2)

★ The Easy Findings Are Drying Up

★ Pond Fished With Dynamite: Random Binary
Fuzzing

★ Matters More For Attackers, But
Professionals Must Follow

matasano

dueling methodologies:
pen test vs. code review

matasano

pen test: fast, tactical

matasano

pen test: misses stuff
(unexposed form fields, hidden injection)

matasano

pen test: limited range
(just CGI variables ala scarab, pantera)

matasano

code review: thorough

matasano

code review: slow
frequent effort/reward risk

matasano

code review: need code
forget third-party dependencies

middle ground

★ Code Assisted Penetration Test

‣ use info about code to improve tests

‣ test-driven, tactical

‣ exploit source, but minimize effort

matasano

reverse engineering
is now practical

intersection

tool
evolution

hardware
dependence

hex edit decompilation

.net CLR

C++

hit trace

rce myth #1

★ End results need to be compilable, nearly as
good as the original source code!

‣ No. Results just need to map out the inputs
and operations. We’ll never recompile. We
don’t need your algorithms.

rce myth #2

★ All reversed source code needs to be read.

‣ No. We’re barely going to read any code.
We isolate the few functions that matter,
figure out their inputs, and test them.

rce myth #3

★ If there are no symbols, reversing is
impractical.

‣ No. Real code is littered with giveaways
about which functions are which. Stripping
function names adds hours, not days.

rce myth #4

★ The goal of reversing is to get back to the
original source language.

‣ No. All we need is “better than assembly”.
We can “decompile” to a call graph, or a
low-level language, and analyze that.

rce myth #5

★ All decompilation is static, file-at-a-time.

‣ No. We’ll use debuggers, system call
tracing, filesystems, logging, and single-
stepping to help.

open

int
main(int argc, char **argv) {
 printf(“helu, world\n”);
 exit(0);
}

closed

000001c0 00 00 00 00 00 00 00 00 00 00 00 00 55 89 e5 53 |............U..S|
000001d0 83 ec 14 e8 f4 ff ff ff 8d 83 1a 00 00 00 89 04 |................|
000001e0 24 e8 1d 00 00 00 c7 04 24 01 00 00 00 e8 0c 00 |$.......$.......|
000001f0 00 00 68 65 6c 75 2c 20 77 6f 72 6c 64 00 f4 f4 |..helu, world...|
00000200 f4 f4 f4 f4 f4 f4 f4 f4 8b 1c 24 c3 22 00 00 00 |..........$."...|
00000210 03 00 00 05 16 00 00 00 03 00 00 05 0e 00 00 a4 |................|
00000220 26 00 00 00 00 00 00 a1 0c 00 00 00 08 00 00 00 |&...............|

disassembled

 push %ebp
 mov %esp,%ebp
 push %ebx
 sub $0x14,%esp
 call 0 <LC_SEGMENT.__TEXT.__text>
 lea 0x1a(%ebx),%eax
 mov %eax,(%esp)
 call 37 <___i686.get_pc_thunk.bx-0x5>
 movl $0x1,(%esp)
 call 32 <___i686.get_pc_thunk.bx-0xa>

call graphed
read()

unknown

close()open()

read()

write()

memcmp()

bblock graphed
prologue

condition

false?funcall

retval

epilogue

hit traced
read()

unknown

close()open()

read()

write()

memcmp()

bblock diffed patch
prologue

condition

false?funcall

retval

epilogue

prologue

condition

false?

funcall

retval

epilogue

condition

open java

class Program {
 public static void main(String args[]) {
 System.out.println(“helu, world”);
 }
}

closed java

class Program {
 public static void main(String args[]) {
 System.out.println(“helu, world”);
 }
}

Why Java Decompiles
★ Simple instructions: fits on a Wikipedia page

★ Embedded types: everything’s an object,
objects have names.

★ Storage model: arguments, locals, instance
variables all predictable, along with stack
frames

★ Verified code: can’t jump to the middle of an
instruction.

★ Minimal indirection: no computed function
pointers

matasano

demo: ida

matasano

demo: paimei
minesweeper

matasano

demo: binnavi eye
candy

matasano

demo: jad

matasano

demo: xcode java

matasano

demo: .net reflector

the 8 steps

1. Configure the Application: set up a working lab.

2. Sniff Test: see if it survives silly stuff.

3. Capture Traffic: get data to work with.

4. Decode and Frame: break up messages.

5. Establish Replayability: start talking to target.

6. Establish Variability: start attacking target.

7. Establish Generation: build fuzzing framework.

8. Write Test Cases: test for coverage.

(1) configure

★ Get the product working in its normal state.

‣ Consider disabling security features for
now.

★ We lose more time here than anywhere
else.

★ Objective: A VMware “just-add-water” lab.

(2) sniff test

★ Is there any authentication?

★ Can I crash it with random data?

★ Objective: Qualify the target.

‣ don’t waste time with totally broken apps.

(3) capture

★ I use tcpdump to figure out what ports an
application uses.

★ I use a simple socket-based plugboard for
everything else.

★ Objective: files for each side of connection

‣ inspect in hexdump

(4) frame

★ The hardest step.

‣ but usually much simpler for web apps

★ Take one capture file.

★ Objective: files for each protocol message.

(5) replay

★ Cat message files back at the server

‣ (in the right order)

★ Objective #1: successful responses

★ Objective #2: see what varies

(6) vary

★ Now we have examples of protocol
messages.

★ Objective: fuzzing templates

‣ Change strings

‣ Change length

‣ Change things at random

(7) generate

★ Now we have a good idea of how the
protocol works.

★ Objective: code to generate from scratch

‣ I’ve used C, Python, Ruby, and Bash

‣ I actually prefer Bash.

(8) test cases

★ Start finding flaws.

★ You should be minutes-not-hours for each
new test case now.

matasano

protocol decoder ring
web RPC corba
HTTP transport IIOP
POST pdu Message

Apache server ORB

Page service Object

URL request IOR

DNS resolver CosNaming

&action= action Method

Cookie session SvcContext

POST Args data MessageBody

matasano

predictable sessions
web RPC corba
Cookie session SvcContext

proprietary session cookies are almost
always monotonically increasing 32 bit
integers.

matasano

forced browsing
web RPC corba
Page service Object

URL request IOR

&action= action Method

Cookie session SvcContext

often, every service/action is left to fend
for itself to verify the caller: requests with
no session are honored.

matasano

memory corruption
web RPC corba
HTTP transport IIOP

POST pdu Message

POST Args data MessageBody

most web apps are built in Java/.NET.
most custom protocols are C/C++.

matasano

injection
web RPC corba
POST pdu Message

POST Args data MessageBody

requests usually still hit an SQL database,
but there’s no off-the-shelf validator code
to use. don’t forget ‘90s shell
metacharacters and UNC paths!

matasano

cross-site-scripting
web RPC corba

POST Args data MessageBody

almost all of these apps have a web front-
end somewhere; “submarine” XSS lets us
inject javascript into backend database.

matasano

conclusion
it seems vanishingly unlikely I’ll

make it to this slide.

matasano

matasanochargen
www.matasano.com/log

http://www.matasano.com
http://www.matasano.com

matasano

chisec:
third thursday, every other month,

houlihan’s on wacker.

matasano

