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about:matasano
★ An Indie Security Firm: Founded Q1’05, 

Chicago and NYC.

★ Research 2006: 

‣ endpoint agent vulnerabilities

‣ hardware virtualized rootkits

‣ a protocol debugger

‣ windows vista (on contract to msft)

‣ storage area networks (broke netapp)

‣ 40+ pending advisories



about:thomasptacek

★ You may remember me from such research 
papers as: “Insertion, Evasion, Denial of 
Service”

★ or such companies as: Secure Networks, 
Network Associates, Arbor Networks

★ or such ISPs as: EnterAct

★ or such high schools as: St. Ignatius

★ etc, etc.



about:owasp_talk

★ Reversing and Code-Assisted Pen Test

‣ add hours-not-days to projects, find 10x as 
many flaws

★ Binary Reversing 

‣ all source is now open; C++, Java, .NET

★ Protocol Reversing

‣ busting secret protocols that hide in HTTP
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why reversing matters (1)

★ Reversing Will “Break Out” For Attackers

★ 1994 Attacker: Shell Scripts, .rhosts

★ 2006 Attacker: Assembly, Kernel Heap
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why reversing matters (2)

★ The Easy Findings Are Drying Up

★ Pond Fished With Dynamite: Random Binary 
Fuzzing

★ Matters More For Attackers, But 
Professionals Must Follow
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dueling methodologies:
pen test vs. code review
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pen test: fast, tactical 
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pen test: misses stuff
(unexposed form fields, hidden injection) 
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pen test: limited range
(just CGI variables ala scarab, pantera) 
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code review: thorough
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code review: slow
frequent effort/reward risk
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code review: need code
forget third-party dependencies



middle ground

★ Code Assisted Penetration Test

‣ use info about code to improve tests

‣ test-driven, tactical

‣ exploit source, but minimize effort
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reverse engineering
is now practical
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rce myth #1

★ End results need to be compilable, nearly as 
good as the original source code!

‣ No. Results just need to map out the inputs 
and operations. We’ll never recompile. We 
don’t need your algorithms.



rce myth #2

★ All reversed source code needs to be read.

‣ No. We’re barely going to read any code. 
We isolate the few functions that matter, 
figure out their inputs, and test them.



rce myth #3

★ If there are no symbols, reversing is 
impractical.

‣ No. Real code is littered with giveaways 
about which functions are which. Stripping 
function names adds hours, not days.



rce myth #4

★ The goal of reversing is to get back to the 
original source language.

‣ No. All we need is “better than assembly”. 
We can “decompile” to a call graph, or a 
low-level language, and analyze that.



rce myth #5

★ All decompilation is static, file-at-a-time. 

‣ No. We’ll use debuggers, system call 
tracing, filesystems, logging, and single-
stepping to help.



open

int 
main(int argc, char **argv) {
      printf(“helu, world\n”);
      exit(0); 
}



closed

000001c0  00 00 00 00 00 00 00 00  00 00 00 00 55 89 e5 53  |............U..S|
000001d0  83 ec 14 e8 f4 ff ff ff  8d 83 1a 00 00 00 89 04  |................|
000001e0  24 e8 1d 00 00 00 c7 04  24 01 00 00 00 e8 0c 00  |$.......$.......|
000001f0  00 00 68 65 6c 75 2c 20  77 6f 72 6c 64 00 f4 f4  |..helu, world...|
00000200  f4 f4 f4 f4 f4 f4 f4 f4  8b 1c 24 c3 22 00 00 00  |..........$."...|
00000210  03 00 00 05 16 00 00 00  03 00 00 05 0e 00 00 a4  |................|
00000220  26 00 00 00 00 00 00 a1  0c 00 00 00 08 00 00 00  |&...............|



disassembled

   push   %ebp
   mov    %esp,%ebp
   push   %ebx
   sub    $0x14,%esp
   call   0 <LC_SEGMENT.__TEXT.__text>
   lea    0x1a(%ebx),%eax
   mov    %eax,(%esp)
   call   37 <___i686.get_pc_thunk.bx-0x5>
   movl   $0x1,(%esp)
   call   32 <___i686.get_pc_thunk.bx-0xa>
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bblock graphed
prologue

condition

false?funcall

retval

epilogue



hit traced
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open java

class Program { 
   public static void main(String args[]) {
      System.out.println(“helu, world”);
   }
}



closed java

class Program { 
   public static void main(String args[]) {
      System.out.println(“helu, world”);
   }
}



Why Java Decompiles
★ Simple instructions: fits on a Wikipedia page

★ Embedded types: everything’s an object, 
objects have names.

★ Storage model: arguments, locals, instance 
variables all predictable, along with stack 
frames

★ Verified code: can’t jump to the middle of an 
instruction.

★ Minimal indirection: no computed function 
pointers
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demo: ida
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demo: paimei 
minesweeper
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demo: binnavi eye 
candy
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demo: jad
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demo: xcode java
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demo: .net reflector



the 8 steps

1. Configure the Application: set up a working lab.

2. Sniff Test: see if it survives silly stuff.

3. Capture Traffic: get data to work with.

4. Decode and Frame: break up messages.

5. Establish Replayability: start talking to target.

6. Establish Variability: start attacking target.

7. Establish Generation: build fuzzing framework.

8. Write Test Cases: test for coverage.



(1) configure

★ Get the product working in its normal state.

‣ Consider disabling security features for 
now.

★ We lose more time here than anywhere 
else.

★ Objective: A VMware “just-add-water” lab.



(2) sniff test

★ Is there any authentication?

★ Can I crash it with random data?

★ Objective: Qualify the target.

‣ don’t waste time with totally broken apps.



(3) capture

★ I use tcpdump to figure out what ports an 
application uses.

★ I use a simple socket-based plugboard for 
everything else.

★ Objective: files for each side of connection

‣ inspect in hexdump



(4) frame

★ The hardest step.

‣ but usually much simpler for web apps

★ Take one capture file.

★ Objective: files for each protocol message.



(5) replay

★ Cat message files back at the server

‣ (in the right order)

★ Objective #1: successful responses

★ Objective #2: see what varies



(6) vary

★ Now we have examples of protocol 
messages.

★ Objective: fuzzing templates

‣ Change strings

‣ Change length

‣ Change things at random



(7) generate

★ Now we have a good idea of how the 
protocol works.

★ Objective: code to generate from scratch

‣ I’ve used C, Python, Ruby, and Bash

‣ I actually prefer Bash.



(8) test cases

★ Start finding flaws.

★ You should be minutes-not-hours for each 
new test case now.
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protocol decoder ring
web RPC corba
HTTP transport IIOP
POST pdu Message

Apache server ORB

Page service Object

URL request IOR

DNS resolver CosNaming

&action= action Method

Cookie session SvcContext

POST Args data MessageBody
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predictable sessions
web RPC corba
Cookie session SvcContext

proprietary session cookies are almost 
always monotonically increasing 32 bit 
integers.
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forced browsing
web RPC corba
Page service Object

URL request IOR

&action= action Method

Cookie session SvcContext

often, every service/action is left to fend 
for itself to verify the caller: requests with 
no session are honored.
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memory corruption
web RPC corba
HTTP transport IIOP

POST pdu Message

POST Args data MessageBody

most web apps are built in Java/.NET.
most custom protocols are C/C++.
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injection
web RPC corba
POST pdu Message

POST Args data MessageBody

requests usually still hit an SQL database, 
but there’s no off-the-shelf validator code 
to use. don’t forget ‘90s shell 
metacharacters and UNC paths!
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cross-site-scripting
web RPC corba

POST Args data MessageBody

almost all of these apps have a web front-
end somewhere; “submarine” XSS lets us 
inject javascript into backend database.
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conclusion
it seems vanishingly unlikely I’ll

make it to this slide.
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matasanochargen
www.matasano.com/log

http://www.matasano.com
http://www.matasano.com
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chisec:
third thursday, every other month,

houlihan’s on wacker.
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